

Note

Regeneration of the carbonyl compounds from their semicarbazones using tetra-*n*-alkylammonium bromates

Akashi Baruah, Utpal Nath, Satya Sandhya Das & Pranab Jyoti Das*

Department of Chemistry, Gauhati University, Guwahati 781 014

E-mail: pjd123@sify.com

Received 7 November 2005; accepted (revised) 8 May 2006

Tetra alkyl ammonium bromates are prepared by a simple procedure and used for the oxidative regeneration of the parent carbonyl compound from their semicarbazones. Reaction conditions are simple and the deprotection gives satisfactory yield of the carbonyl compound.

Keywords: Tetraalkylammoniumbromate, oxidative cleavage, semicarbazones, carbonyl compounds, deprotection

IPC Code: Int.Cl.⁸ C07C

Quaternary ammonium salts are versatile phase transfer catalysts and some of them have been used to assist oxidation of a variety of organic substrates using inexpensive primary oxidants such as O₂ (ref. 1), NaOCl (ref. 2), KMnO₄ (ref. 3) H₂O₂ (ref. 4) and others (refs 5,6). Efforts are now directed towards the use of modified quaternary ammonium salts as reagents rather than as catalyst. In our previous communications⁷⁻¹⁰, the preparation of a quaternary-ammonium bromate from the easily available bromide by a simple procedure was reported and these bromates used for the oxidation of aromatic amines to nitro compounds⁷, benzyl alcohols and halides to the aldehydes⁸ and for the oxidative deoximation⁹ were reported. We have since modified the reported procedure⁷⁻⁹ for the preparation of the quaternary ammonium bromates and observed that the procedure reported herein gives better and cleaner yield of the bromates. Two different bromates were prepared namely the tetraethylammoniumbromate **I** and the *N*-cetyl-*N,N,N*-trimethylammoniumbromate **II**. These bromates were soluble in organic solvents as well as in water, albeit sparingly. Bromates are seldom used as oxidants in organic synthesis primarily because of their insolubility in organic solvents. Favourable solubility characteristics of these tetraalkylammonium bromates offer opportunity not only as for their use a

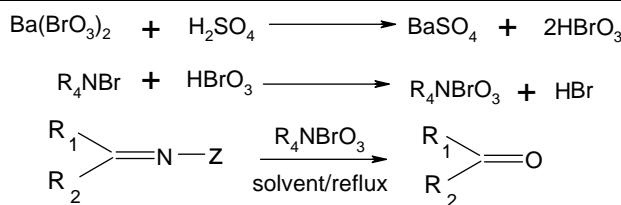
primary oxidant but also resulted in easier product recovery techniques.

Semicarbazones are easily prepared derivatives of the carbonyl compounds and give well characterized crystalline products which are used frequently for the detection and identification of the carbonyl compounds. However, the semicarbazones are seldom used as a good protective group for the carbonyl compound as there are very few procedures for the regeneration of the parent carbonyl compound¹⁰⁻¹⁴. Herein we wish to report a very useful and easy method for the oxidative regeneration of the carbonyl compounds from their semicarbazone derivatives. The procedure involves the refluxing of quaternary-ammonium bromate and semicarbazone in an appropriate solvent for a stipulated period of time as shown in **Table I**. Product recovery is simple and the resulting carbonyl compounds are obtained in good yields. The transformation is shown in **Scheme I**.

Experimental Section

All reagents and solvents were purified by methods reported in literature^{15,16}. The quaternary ammonium bromides were procured from E. Merck Inc. Melting points were recorded in an apparatus from Scientific Devices, India, Type MP-D in open capillaries. ¹H NMR spectra recorded in EM 360, 60 MHz spectrophotometer, IR in Perkin-Elmer 1600 FT IR spectrometer and C, H, N, analyses were obtained from facilities available at RRL, Jorhat and IIT, Guwahati.

Preparation of the semicarbazone. The semicarbazones were prepared as per procedure obtained from literature¹⁵.


Preparation of bromic acid (HBrO₃). Finely ground Ba(BrO₃)₂ (10 g) was taken in an Erlenmeyer flask and to it was added dilute sulphuric acid (5 mL in 50 mL water) dropwise with constant shaking. After addition, the flask was kept for 24 hr in an ice-bath with frequent shaking. The contents of the flask are diluted with water (60 mL). A 10% solution of Ba(OH)₂ was added to remove the excess H₂SO₄. The mixture was allowed to stand overnight and the clear HBrO₃ solution was filtered.

Preparation of the tetraalkylammonium bromates. Tetraethylammoniumbromide (0.01 mole) was dissolved in minimum amount of water. To this

Table I—Experimental details of the generation of carbonyl from semicarbazone

Sl. No.	Substrate	Product	Oxidant	Reflux time (min)	Yield %	m.p.	b.p.	Solvent
1			I	180	92	48	48	MeOH
			II	24	90			
2			I	120	77	44	44	dioxan
3			I	72	70	132	130	dioxan
4			I	75	72	58	58	toluene
5			II	150	78	47	47	dioxan
6			I	120	70	110	109	EtOH
7			II	300	66	52	53	dioxan
8			I	240	78	76	78	DCM
9			I	360	55	110	110	dioxan
10			II	120	85	95	95	dioxan
11			I	180	92	48	48	EtOH
			II	240	90			
12			I	120	64	127b.p.	127b.p.	EtOH
13			I	90	82	177b.p.	179b.p.	EtOH
14			I	120	85	158b.p.	156b.p.	EtOH
15			I	420	77	244b.p.	247b.p.	EtOH
16			I	300	72	250b.p.	252b.p.	EtOH

NZ=NHCONH₂ Ph=Phenyl

Scheme I—Regeneration of carbonyl group from semicarbazones

aqueous solution of the bromide, the solution of HBrO_3 was added dropwise with constant shaking till a coloured precipitate of the tetraalkylammonium bromate was obtained. The solid bromate was filtered and washed several times with ice-cold water and dried.

The tetraethylammonium bromate was obtained as a yellow solid, m.p. 54°C and *N*-cetyl-*N,N,N*-trimethylammonium bromate was obtained as a light yellow solid m.p. 84°C. The bromates obtained responded to all the test of bromates and confirmed by the C, H, analysis.

General procedure for the regeneration of carbonyl compounds from semicarbazones. Semicarbazone (0.001 mole) and quaternary-ammonium-bromate (0.001 mole) were dissolved in appropriate solvent (10 mL) and refluxed for stipulated time (**Table I**). The reaction was periodically monitored by TLC using ethanol as eluent. The completion of the reaction was observed from TLC. To the mixture ether was added which gave the parent carbonyl compound and was purified by column chromatography using silica gel column and ethyl acetate as eluent (**Table I**). The parent carbonyl compound was confirmed by mixed m.p., I.R. and ^1H NMR spectral data and by comparing with authentic samples.

Benzophenone 1: ^1H NMR (CDCl_3 , δ), 7.2 (broad 10H); IR (KBr, cm^{-1}): 1710; UV (95% EtOH): 282 nm; **2-nitrobenzophenone 2:** ^1H NMR (CDCl_3 , δ): 9.1 (s, 1H) 8.1(broad, 4H), IR (KBr cm^{-1}): 1730 (carbonyl) 1552, 1332 ($-\text{NO}_2$); UV (95% EtOH): 277 nm; **2-nitrobenzophenone 3:** ^1H NMR (CDCl_3 , δ): 9 (s, 1H), 7.7-7.9 (broad, 4H); IR (KBr cm^{-1}): 1745 1529, 1290 ($-\text{NO}_2$); UV (95% EtOH): 285 nm; **3-nitrobenzaldehyde 4:** ^1H NMR (CDCl_3 , δ): 8.7 (1H), 7.3-7.8 (4H, d), IR (KBr, cm^{-1}): 1713 carbonyl, 1515, 1320 ($-\text{NO}_2$), UV (95% EtOH): 295 nm; **4-chlorobenzaldehyde 5:** ^1H NMR (CDCl_3 , δ): 9.2

(1H), 7.3-7.7 (4H, d); IR (KBr cm^{-1}) 1740 (carbonyl) UV (95% EtOH): 285 nm; **4-hydroxybenzaldehyde 6:** ^1H NMR (CDCl_3 , δ): 8.8 (1H), 7.7-7.9 (4H, d); IR (KBr cm^{-1}): 1695 (carbonyl), 3455 ($-\text{OH}$); UV (95% EtOH): 280 nm; **2-naphthaldehyde 7:** ^1H NMR (CDCl_3 , δ): 9.3 (1H), 7.2-7.6 (broad, 7H); IR (KBr cm^{-1}): 1710 (carbonyl); UV (95% EtOH): 292 nm; **benzoyl vanillin 8:** ^1H NMR (CDCl_3 , δ): 7.6-8.1 (broad 8H), 4.2 (s, 3H); IR (KBr, cm^{-1}): 1725 (carbonyl) 1765 (carbonyl); UV (95% EtOH): 282 nm; **dibenzylidene acetone 9:** ^1H NMR (CDCl_3 , δ): 8.1 (1H), 6.9-7.4 (broad 10H), 3.8 (s 2H); IR (KBr cm^{-1}): 1690 (carbonyl); UV (95% EtOH): 314 nm. **benzil 10:** ^1H NMR (CDCl_3 , δ): 7.3-7.9 (broad) 2.4 (1H); IR (KBr cm^{-1}): 1720 (carbonyl), 3625 ($-\text{OH}$); UV (EtOH): 288 nm; **camphor 11:** ^1H NMR (CDCl_3 , δ): 2.1-2.5 (9H), 3.1-3.6 (6H); IR (KBr cm^{-1}): 1733 (carbonyl); UV (95% EtOH): 271 nm; **benzylmethylketone 12:** ^1H NMR (CDCl_3 , δ): 2.4 (3H), 1.2-1.6 (broad, 9H); IR (KBr, cm^{-1}): 1750 (carbonyl); UV (95% EtOH): 275 nm; **benzaldehyde 13:** ^1H NMR (CDCl_3 , δ): 9.1 (1H), 7.2-7.6 (5H); IR (KBr, cm^{-1}): 1730 (carbonyl); UV (95% EtOH): 275 nm; **cyclohexanone 14:** ^1H NMR (CDCl_3 , δ): 2.3-3.1 (broad 10H); IR (KBr, cm^{-1}): 1720 (carbonyl); UV (95% EtOH): 280 nm; **anisaldehyde 15:** ^1H NMR (CDCl_3 , δ): 8.8 (1H), 6.9-7.2 (4H), 3.6 (3H); IR (KBr cm^{-1}): 1715; UV (95% EtOH): 285 nm; **methylpropylketone 16:** ^1H NMR (CDCl_3 , δ): 2.2 (3H), 1.4-1.8 (7H); IR (KBr cm^{-1}): 1695 (carbonyl), UV (95% EtOH): 263 nm.

Acknowledgement

The authors are grateful to the University Grants Commission, New Delhi, for financial assistance in the form of a major research project.

References

- 1 Neumann R & Sasson, *J Chem Soc Chem Comm*, **85**, 616.
- 2 Do J S & Chou T C, *Ind Eng Chem*, **29**, **1990**, 1095.
- 3 Barak G & Sasson Y J, *J Chem Soc Chem Comm*, **1987**, 1266
- 4 Dehmlow E V & Cyrankiewicz R, *J Chem Res(S)*, **1990**, 2.
- 5 Kalsi P S, Kaur P P, Singh J & Chabra B, *Chem Ind (Lon)*, **1987**, 394.
- 6 Dehmlow E V & Dehmlow S S, *Phase Transfer Catalysis*, **2nd Edn**, Verlag Chemie Deerfield, Beach, Florida, **1983**.
- 7 Satya Sandhya Das, Utpal Nath Dibaker Deb & Das P J, *Synth Comm*, **34**, **2004**, 1423.
- 8 Deb Dibakar, Satya Sandha Das, Utpal Nath & Das P J, *Indian J Chem*, **34B**, **2004**, 1360.

- 9 Satya Sandhya Das, Utpal Nath & Das P J, *Chem An Indian Journal*, 1, **2004**, 471.
- 10 Utpal Nath, Satya Sandhya Das & Das P J, *New Journal of Chemistry*, 28, **2004**, 423.
- 11 Krik D N & Slade C J, *Tetrahedron Lett*, 31, **1990**, 651.
- 12 Varma R S & Meshram H M, *Tetrahedron Lett*, 38, **1997**, 7973.
- 13 Ram R N & Varsha K, *Tetrahedron Lett*, 31, **1990**, 5829.
- 14 Bose D S, Vanajhatha G & Srinivas P, *Indian J Chem*, 35 B, **1999**, 835.
- 15 H T Clarke & B Haynes, *A Handbook of Organic Analysis*, 2nd Edn, Edward Arnold Publishers Ltd London, **1997**.
- 16 K Vogel, *A Textbook of Practical Organic Chemistry*, 4th Edn, **1996** (Orient Longman, London).